
 
 

 
 
 
 

1 

 
 

“Dissecting a new malspam 
chain delivering  

Purelogs infostealer” 
 

 
 
 

Dipartimento di Management ed Economia 

 

Centro di Ricerca in 
Analisi dati, Intelligence, Sicurezza, Informazione (AISI) 

 
 

Osservatorio sulla Cybersecurity diretto da Pierluigi Paganini 

 

Rapporto a cura del Laboratorio di Analisi Malware diretto da  
Luigi Martire  

 
  



 
 

 
 
 
 

2 

Sommario 
Introduction ...................................................................................................................................................... 3 

Technical Analysis ............................................................................................................................................. 3 

The malspam ................................................................................................................................................. 3 

Purelogs loaders ........................................................................................................................................... 5 

The final payload ........................................................................................................................................... 9 

Conclusion ....................................................................................................................................................... 15 

Indicators of Compromise ............................................................................................................................... 15 

MITRE ATT&CK Table ...................................................................................................................................... 16 

 

 
  



 
 

 
 
 
 

3 

Introduction 
 
Malspam remains one of the most prevalent and effective initial infection vectors leveraged by 
threat actors to distribute malware at scale. Despite the increasing sophistication of endpoint 
protection and email filtering technologies, malspam campaigns continue to pose a significant 
threat to organizations and individuals alike due to their adaptability, low operational cost, and 
capacity to exploit human factors such as curiosity, urgency, and trust. By masquerading as 
legitimate business correspondence, invoices, shipment notifications, or security alerts, attackers 
can reliably trick unsuspecting recipients into opening malicious attachments or clicking on 
embedded links, thus initiating the infection chain. 
Malspam campaigns employ a variety of payload-delivery mechanisms including weaponized 
Office documents that leverage macros and embedded OLE objects or exploit chains such as, 
exploitation of CVE-2017-11882 or CVE-2017-8570 
The malspam ecosystem is constantly evolving, supported by a complex underground economy of 
malware developers, bulletproof hosting providers, phishing-kit vendors, and botnet operators. 
  
Technical Analysis 
 

The malspam 
 
The analyzed sample was delivered through a malspam across the entire Europe campaign 
distributing weaponized Microsoft Word documents as email attachments. Telemetry from 
VirusTotal indicates the malicious file named “scansione0038.docx”  was first submitted from Italy 
and flagged by 24 out of 66 security vendors. 
 

 
Figure: Detection rate of the malicious document 

 
The phishing email impersonates PKS International Cargo S.A., a legitimate Polish logistics 
company. The message is written in Polish and uses a convincing business pretext, claiming to 
contain customs or warehouse documents (“Dokumenty z odprawy”). 
The sender address (hreb enne@castril.biz) differs from the legitimate corporate domain, 
indicating domain spoofing or use of a lookalike domain. The inclusion of realistic contact details, 
phone numbers, and multilingual signatures enhances credibility and social-engineering 
effectiveness. 
 



 
 

 
 
 
 

4 

 
Figure: Caption of the malicious mail 

Once opened, the .docx document attempts to execute embedded content that triggers an 
outbound request to an external resource, as observed in the above figure. The Word splash 
screen explicitly shows an HTTP(S) connection to arcanite.ch, a legit hosting provider. 
 

 
Figure: Template Injection 

 
The malicious document leverages the Template Injection Technique in order to download 
another RTF file, which contains the next stage of the infection. In Microsoft Office, Template 
Injection abuses the Remote Template feature embedded within the document’s 
word/_rels/settings.xml.rels file. This XML relationship file defines external template locations via 
attributes, as reported here: 

 
Figure: Template injection in word/_rels/settings.xml.rels file 

 



 
 

 
 
 
 

5 

The fetched content in this case is a malicious RTF file hosted on the remote domain 
(go.arcanite.ch), designed to exploit CVE-2017-11882, a well-known vulnerability in the Microsoft 
Equation Editor component (EQNEDT32.EXE). This vulnerability, discovered in late 2017, allows 
arbitrary code execution via stack buffer overflow when the application parses a crafted OLE object 
embedded within an RTF container. Despite the age, this vulnerability remains one of the most 
exploited by threat actors to deliver malware. 
Upon successful exploitation, shellcode embedded in the RTF executes with the privileges of the 
user running Word, providing the attacker with an initial foothold for further payload delivery. 
The next stage is downloaded from the dropurl hxxp[://]107[.173.47.]147/236/emcs.exe 
 

Purelogs loaders 

Following successful exploitation via the malicious RTF (CVE-2017-11882) delivered through 
template injection, the shellcode proceeds to download and execute the final-stage payload. The 
retrieved binary in this case is the file: 

ecb52ac571074c4c501344241912a964ab30356a3883ca2c1db3b3b6914399a6 
 

 
Figure: Static Information about the sample 

 
Static analysis of the binary indicates a PE32 executable, compiled as a 32-bit GUI application, 
developed in C#, and relying on the .NET Framework v4.0.30319. The overall file size is 
approximately 1.11 MiB, which is consistent with numerous commodity loaders and packers used 
in current stealer distribution campaigns. 
 
The metadata characteristics, together with the execution chain and the external infrastructure 
previously observed, strongly suggest that emcs.exe does not represent the final malicious 
component itself, but rather a custom packer or loader designed to unpack and execute the actual 
stealer payload in memory. In this campaign, the final malware family is identified as PureLogs 
Stealer, a credential-harvesting threat specialized in collecting browser data, system information, 
saved credentials, Discord tokens, and telemetry relevant for follow-on compromise. 
 



 
 

 
 
 
 

6 

 
Figure: In-memory unpack of the next stage loader 

At this stage, the malware is performing reflection-based dynamic assembly loading, a common 
technique used by packers and droppers to execute embedded or encrypted payloads directly 
from memory, bypassing disk-based detection. 

The relevant instruction is: 

Assembly Wr_99 = typeof(Assembly).InvokeMember( 
    "Load", 
    BindingFlags.InvokeMethod, 
    null, 
    null, 
    new object[] { pf } 
); 

 
This method retrieves an internal resource (Resources.Task1), processes it via an 
obfuscation/decoding routine (SyncTaskLedger), and returns the decoded bytes into the array pf. 
By calling Assembly.Load(byte[]) the malware loads this PE as a .NET assembly without ever 
writing it to disk. 
 



 
 

 
 
 
 

7 

 
Figure: Static information about the loader 

 
Static inspection of the PE metadata reveals that the binary loaded in the previous reflection step is 
a .NET DLL (38 KB), compiled for x86, using the Microsoft Linker 8.0, and protected with 
SmartAssembly. SmartAssembly is a commercial .NET obfuscator frequently abused in malicious 
loaders to hinder static analysis, encrypt resources, and virtualize control flow. 
These characteristics are typical of intermediate loaders. The presence of a binary overlay and 
SmartAssembly protection indicates that the DLL is designed not to expose its true logic statically, 
but to decrypt/deserialize additional embedded components at runtime. 
 

 
Figure: Extraction of the next stage from resources 

 

At this stage of execution, it becomes evident that the component loaded through reflection is not 
the final payload, but rather another intermediate layer in the packer chain, one specifically 
designed to decode and reconstruct additional pieces of malicious code. The loader heavily relies 
on SmartAssembly-obfuscated routines, where class and method names appear as unreadable 
Unicode escape sequences such as \u0080.\u009A or \u001F.\u0097. While this obfuscation 



 
 

 
 
 
 

8 

makes the static structure difficult to interpret, the underlying logic reveals a familiar pattern 
commonly seen in multi-layer .NET loaders. 

One of the clearest indicators of its role is the repeated use of the ResourceManager class. The 
loader invokes various obfuscated functions to dynamically resolve resource containers using 
seemingly innocuous strings like "ViriP" and "JuegoMemoriaColores". These values act as keys 
to access encrypted blobs stored within the assembly’s resource section. In appearance, the 
function returns a Bitmap object, a technique frequently used by .NET packers to disguise 
encrypted executable data within image resources.  

 

 
Figure: Launching the Fake DriverFix Pro module 

 
After the previous decoding layer reconstructs the encrypted resource data, the next stage of 
execution is responsible for loading the fully decrypted payload directly into memory. The 
screenshot shows the malware inside a SmartAssembly-obfuscated module, where the final 
payload is instantiated using extremely obfuscated procedures and Unicode-based method names. 
 
The static constructor .<Module>() and its companion internal method that returns a byte[] are 
critical parts of this mechanism. Both perform a chain of operations involving: 

• decryption of the embedded resource 
• streaming the decrypted bytes into a MemoryStream 
• and finally invoking the module loader to convert those bytes into a valid .NET assembly 

 
This occurs entirely in memory, never writing the final binary to disk. Indeed, in the following 
picture, an extraction of the payload used to resemble the next stage. 
 



 
 

 
 
 
 

9 

 
Figure: Arranging the binary memory stream for the next payload 

 

 
Figure: Completing the unpacking the Purelogs Payload 

 
At this point in the execution chain, the loader has fully transitioned to its last decoding phase. As 
seen in the screenshots, this stage is responsible for assembling the final malicious binary from 
fragmented, encrypted data blocks. Each block of integers decodes a section of the final PE 
binary. This multi-array reconstruction strategy helps hide the actual payload structure, as the raw 
bytes are never stored in a contiguous form until the very last moment. 
 

The final payload 

In this final stage we are now looking directly at the PureLogs stealer payload, identified by the 
hash: 



 
 

 
 
 
 

10 

9c164687268cf1235c52a649e4d7ac9497b4925637c7b9abcbb6df1811e09472 

 
Figure: Evasion Technique 

Before proceeding with its main logic, PureLogs verifies whether a debugger is attached to the 
process using System.Diagnostics.Debugger.IsAttached. If a debugger is detected, the 
stealer immediately throws a custom exception (“Debugger Detected”) and can either terminate 
execution or branch into a decoy/error path, depending on how the exception is handled. This is a 
straightforward anti-analysis measure aimed at frustrating reverse engineers working in 
dnSpy/ILSpy, Visual Studio or other .NET debuggers. 

Despite this protection and the heavy SmartAssembly-style obfuscation (garbled method names, 
control-flow flattening, encrypted strings), stepping through the code under a controlled 
environment eventually exposes the configuration blob used by PureLogs.  
 

 
Figure: Evidence of the Purelogs Configuration 

 



 
 

 
 
 
 

11 

The snippet shown at the bottom: 

@string 
"wgFCEg4xODUuMTQ5LjI0LjIwMRI6rgEiIDB1anJFQmY5Tk5wTmtZVkRYYlZwUm1rbStoTDNMWHNu
KgpOVVRDUkFDS0VS" 

is a typical example: a long, opaque Base64-like string that, once decoded and de-obfuscated, 
contains the stealer’s runtime configuration. In this case, the configuration includes the C2 
endpoint, build ID, a 3-DES key used to decrypt other critical information of the malware: 

 
Figure: Decoding the configuration of Purelogs stealer 

In fact, the malware uses the key “0ujrEBf9NNpNkYVDXbVpRmkm+hL3LXsn” every time it need to 
decrypt other configuration components and information, by initiating a 
TripleDESCryptoServiceProvider. 
 

 
Figure: Evidence of the usage of the key in 3DES encryption-decyption 



 
 

 
 
 
 

12 

 
One of the first tasks performed by the final stage is the creation of a mutex, which acts as a 
simple persistence and duplication-prevention mechanism. The mutex is generated using a GUID-
based identifier, and serves to detect whether an instance of the malware is already running on the 
host. 
If the mutex already exists, PureLogs concludes that the system has already been infected and 
terminates immediately. 
If no mutex is found, the new instance creates it, then deliberately sleeps for approximately 30 
seconds before transferring control to the main execution thread. 
 

 
Figure: C2 Healthcheck 

 
After the mutex logic completes, one of the first operations executed by the main routine is a 
reachability check against the Command-and-Control (C2) server. The malware attempts to 
establish a socket connection to its configured endpoint as part of its standard initialization phase. 
This behavior ensures that the stealer only proceeds if the operator’s infrastructure is online and 
able to receive exfiltrated data. 
At the time of analysis the C2 infrastructure was offline, consistent with the earlier network 
observations. Nevertheless, the failure to contact the C2 did not prevent us from continuing the 
analysis of the malware’s internal logic, as the stealer proceeds to load several components and 
configuration routines even when the endpoint is unreachable. 
 



 
 

 
 
 
 

13 

 
Figure: Main routine with the start of the infostealing routine 

 

In the above picture there is the main entry point of the final PureLogs payload. Although all 
class, method, and field names are obfuscated beyond readability (as is typical for PureLogs 
builds), the behavior observed here reveals that this function is responsible for initializing the entire 
stealer workflow. 

The routine begins by collecting a variety of system identification attributes, indicating that 
PureLogs is gathering host fingerprinting information typically used for: 

• tagging the victim within the C2 panel 
• validating successful infections 
• applying configuration rules (e.g., skip stealing on specific OS versions or environments) 
• generating filenames or identifiers for exfiltrated logs 

This profiling step is typically performed before credential harvesting begins. 

All the operations are performed through an array of Task objects, which are used to make the 
infostealing activities concurrent, in order to optimize the behaviour 



 
 

 
 
 
 

14 

 
Figure: Concurrent exfiltration tasks 

 

 
Figure: Evidence of gathering information about the processor 

 

 
Figure: Evidence of string-appending routine to the exfiltrated information 

 
When all tasks are completed, the Purelogs sample sends all the gathered information to the C2, 
by using the Socket.Send function. 
 



 
 

 
 
 
 

15 

 
Figure: Communication to the C2 

Conclusion 
 
The analysis of the sample demonstrates a highly modular and multi-stage infection chain 
designed to bypass static detection, evade dynamic analysis, and reliably deliver the PureLogs 
stealer into the victim’s environment. Beginning with a convincing malspam lure delivered via a 
DOCX attachment, the threat actors employed template injection to silently retrieve a remote RTF 
exploit leveraging CVE-2017-11882, a long-standing vulnerability still widely abused due to 
incomplete patching in many organizations. 
 PureLogs, in particular, has become highly pervasive in the last years due to its low cost, ease of 
customization, and support within the cybercriminal ecosystem. Its distribution through unpatched 
exploit chains and multi-layer loaders indicates that threat actors are increasingly adopting 
techniques traditionally associated with more advanced malware families. The use of remote 
templates, memory-only PE loading, and SmartAssembly, .NET Reactor obfuscation demonstrates 
a continued shift toward stealthy delivery mechanisms designed to defeat modern EDR products. 
 
Indicators of Compromise 
 

• Hash 
o 54c67d82164a2326ad7585995c39de920471f33401d272260e21ee4968f59a50 
o 9c164687268cf1235c52a649e4d7ac9497b4925637c7b9abcbb6df1811e09472 
o 9f679fd62939a6a3236fc6a91a93d19071a28750cbcfb464bf37c77183d7ead4 
o 76cae04f9b3c1fe16f10b2740ff23a067258babf7f520c81a6fb16687f425d19 
o 54c67d82164a2326ad7585995c39de920471f33401d272260e21ee4968f59a50 
o 8b7cfe23539027e6b32aa7be3f7be406e10d40a3f73b7a7bf1b5d105214cc123 
o ecb52ac571074c4c501344241912a964ab30356a3883ca2c1db3b3b6914399a6 

• Network 
o hxxps[://]--------------------------------

9238499328998429404023049004539405093@go.arcanite[.]ch/994FVU?&----
--------------------------3299402340402930424029483249924929348 

o hxxp[://]107[.173.47.]147/236/emcs.exe 
o 185.]149.24.201[:]22330) 

 



 
 

 
 
 
 

16 

MITRE ATT&CK Table 
 
Phase Code Technique Name 

Initial Access T1566.001 Phishing: Spearphishing Attachment 

Execution T1204 User Execution 

Execution T1204.002 User Execution: Malicious File 

Execution T1221 Template Injection 

Execution T1203 Exploitation for Client Execution 

Execution T1106 Native API 

Defense Evasion T1027 Obfuscated/Encrypted Files or Information 

Defense Evasion T1027.002 Software Packing 

Defense Evasion T1027.006 Embedded Payloads 

Defense Evasion T1140 Deobfuscate/Decode Files or Information 

Defense Evasion T1620 Reflective Code Loading 

Defense Evasion T1055 Process Injection 

Defense Evasion T1497.001 Virtualization/Sandbox Evasion: System Checks 

Defense Evasion T1497.003 Time-Based Evasion 

Defense Evasion T1542.003 Boot/Logon Autostart Execution: Mutex 

Discovery T1082 System Information Discovery 



 
 

 
 
 
 

17 

Discovery T1083 File and Directory Discovery 

Credential Access T1555.003 Credentials from Web Browsers 

Credential Access T1555 Credentials from Password Stores 

Credential Access T1539 Steal Web Session Cookie 

Collection T1119 Automated Collection 

Collection T1114 Email Collection 

Collection T1056 Input Capture 

Collection T1025 Data from Removable Media 

Collection T1005 Data from Local System 

Command & Control T1071.001 Web Protocols 

Command & Control T1105 Ingress Tool Transfer 

Command & Control T1008 Fallback Channels 

Exfiltration T1567.002 Exfiltration Over Web Service 

Exfiltration T1041 Exfiltration Over C2 Channel 

 
                                                                                          


